Exercise 17

Solve the initial-value problem.

$$
y^{\prime \prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=3
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}+3\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+3=0
$$

Solve for r.

$$
r=\{-i \sqrt{3}, i \sqrt{3}\}
$$

Two solutions to the ODE are $e^{-i \sqrt{3} x}$ and $e^{i \sqrt{3} x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{-i \sqrt{3} x}+C_{2} e^{i \sqrt{3} x} \\
& =C_{1}(\cos \sqrt{3} x-i \sin \sqrt{3} x)+C_{2}(\cos \sqrt{3} x+i \sin \sqrt{3} x) \\
& =\left(C_{1}+C_{2}\right) \cos \sqrt{3} x+\left(-i C_{1}+i C_{2}\right) \sin \sqrt{3} x \\
& =C_{3} \cos \sqrt{3} x+C_{4} \sin \sqrt{3} x,
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are arbitrary constants. Differentiate this general solution.

$$
y^{\prime}(x)=-\sqrt{3} C_{3} \sin \sqrt{3} x+\sqrt{3} C_{4} \cos \sqrt{3} x
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{gathered}
y(0)=C_{3}=1 \\
y^{\prime}(0)=\sqrt{3} C_{4}=3
\end{gathered}
$$

Solving this system of equations yields $C_{3}=1$ and $C_{4}=\sqrt{3}$. Therefore, the solution to the initial value problem is

$$
y(x)=\cos \sqrt{3} x+\sqrt{3} \sin \sqrt{3} x .
$$

Below is a graph of $y(x)$ versus x.

